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The possibility of using lasers to form semiconductor materials (cadmium and mercury tellurides) with a 

predetermined width of the band gap was explored using mathematical modeling. A one-dimensional 

physicomathematical model based on diffusion and heat conduction equations and transport equations for 

laser radiation with temperature- and concentration-dependent coefficients was used. Self-similar solutions 

were used in order to obtain certain qualitative regularities of the processes. In the general case the 

corresponding system of partial differential equations was integrated numerically. 

Introduction. Semiconductor compounds of elements of the second and sixth groups of the periodic table 

play an important part in modern semiconductor physics and engineering, being most important and promising 

materials in a series of rapidly developing branches of science and technology, especially photo- and optoelectronics, 

quantum radiophysics, and acoustoelectronics. This is primarily connected with the fact that these compounds have 

various values of the band-gap width: from zero to several electron-volts, which makes it possible to vary their 

electric, photoelectric, and optical properties over a wide range. The conductivity of substances of this class can 

vary from values corresponding to a semimetal to those characteristic for an insulator, and the spectral zone of 

photosensitivity - from IR to UV. 

In this connection interest is growing in investigating various physical properties of the compounds 

mentioned, in particular, narrow-band-gap semiconductors, which (especially solid CdxHgl_xTe solutions with x = 

0.2-0.3) have been widely used in recent years as a material for fabricating photosensors operating in the ranges 

3 - 5  and 8 -  14/~m. Photosensors fabricated from these compounds already dominate in IR imaging technology and 

lidar and communication systems. 

Several methods of production of cadmium and mercury tellurides exist. The present work is devoted to 

mathematical modeling of laser-induced diffusion processes for production of semiconductor materials based on 

AB-type compounds with a predetermined width of the band gap (CdxHgl_xTe alloys). A one-dimensional 

physicomathematical model based on diffusion and heat conduction equations and transfer equations for the laser 

radiation with temperature- and concentration-dependent coefficients is employed. In order to investigate a series 

of qualitative regularities, self-similar solutions are considered. In the general case the analysis is carried out 

numerically. 

The aim of the present work is to analyze the possibility of use of lasers to form semiconductor materials 

with a required width of the band gap in the system of an epitaxial film of a narrow-band-gap semiconductor and 

a substrate of a wide-band-gap AB-type semiconductor. The possible qualitative character of phenomena taking 

place in the course of this process is described, e.g., in [ l ]. Laser radiation with a wavelength corresponding to the 

width of the band gap of the material being produced passes through a transparent wide-band-gap semiconductor 

and is absorbed by a narrow-band-gap one. As a result, intense local heating takes place at the interface of the 

materials, which leads to acceleration of mutual diffusion and formation of a semiconductor alloy having a band 

gap of an intermediate width. Repeated laser action leads to motion of the zone of localized absorption toward the 

film-air interface and formation of an alloy of the required composition. The processes of mutual diffusion can be 

controlled by varying parameters of the laser radiation and the original materials. 
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Fig. 1. Format ion  of tempera ture  and concentra t ion profiles for product ion of 

a semiconductor  alloy. 

Principles of the method developed to ca r ry  out numerical  exper iments  a re  out l ined in the monogra th  [2 ]. 

Par t icular  calculat ions were carr ied out for semiconductor  mater ia ls  consis t ing of Cd0.2Hgo.sTe alloys.  The  

possibi l i ty  of forming of a semiconduclor  consis t ing of CdxHgl_xTe al loy was es t imated .  In accordance  with the 

width of the band gap of the mater ia l  obta ined ,  use of a laser  with a wavelength 2 = 10.6/~m was cons idered .  It 

was assumed that  the t empera ture  of the system must not exceed the melting tempera ture  of the invest igated 

mater ia ls  in the process of mutual  diffusion and heat t ransfer .  

1. S ta tement  of  the Problem.  Basic Equations.  Processes of mutual  diffusion and heat  t r ans fe r  a t t r ibu tab le  

to absorpt ion of laser  radia t ion  and the mechanism of heat  conduct ion that  take place in CdxHgl_xTe al loys can be 

descr ibed  by the following sys tem of equations I3-7 ]: 

c)x (1.1) 
- div I ,  

Ot 

OT 
pC ~ = - div W - div q ,  

(1.2) 

J -  - D g r a d x ,  (1.3) 

W = - K grad T ,  (1.4) 

d i v q  = - kq. (1.5) 

The  specific heat  of the medium and  the coefficients  of mutual  diffusion,  thermal  conduct iv i ty ,  and  

absorpt ion  of radia t ion are  genera l ly  functions of concentrat ion and temperature .  Addi t ional  diffusional fluxes 

result ing from the tempera ture  gradient  ( thermodiffusion) are  not taken into account. We treat  diffusion and heat  

t ransfer  processes within the plane symmet ry  approximat ion.  Then  the sought functions will depend  on the time t 

and the spatial  coordinate  z. 

Let z = 0 be the coordinate  character iz ing the boundary  of the system under  considera t ion on which the 

flux of laser radiat ion with a t ime-dependen t  densi ty  q(0, t) = Q(t) is predetermined.  Under  the assumpt ions  

specified the system of equations (1.1)-(1.5) can be written as follows: 

152 



Ox O(DOX ) 
O--7- 0z ~ , (1.6) 

OT OW Oq (1.7) 
p C - ~ = -  Oz Oz' 

OT (1.8) 
W= - K  Oz ' 

z~ ) (1.9) 
q = Q ( t )  exp - f kdz' . 

o 

We will assume that at the initial ins tant  t = 0 a substrate  consist ing of CdTe  (x = 1) alloy with a densi ty  

p(z, 0) = P~)I) occupies the region 0 _< z _< z(0 ) and a layer of HgTe (x = 0) with a densityp(z, 0) = P~)0) deposited 

on the substrate  occupies the region z(0) <- z _< z(1) (see Fig. la) .  The initial temperature is constant  within the 

region 0 _< z _< z0): T(z, 0) = TO. As was ment ioned in the Introduction,  at the initial instants ,  as a result  of 

t ransparency of CdTe  alloy, the radiat ion Q(t) reaches the boundary  z = zo, where it is absorbed. The local heat ing 

resulting from this circumstance leads to mutual  diffusion of particles and  heat t ransfer  due to thermal conductivity.  

The process lasts up to a certain ins tant  t = 2 at which the local-heating zone (the zone of absorption of the laser 

radiation) reaches the right boundary  of the system z = z(l). The objective of the investigation was an est imate of 

the possibilities of forming Cdo.2Hgo.sTe semiconductor alloy by the time t =, 2", i.e., the concentrat ion profile x = 

x(z, -t) depicted in Fig. lb  (x = 0.2 when z(0 ) < z < z(1)). 

We consider  the system (1.6)-(1.9) subject to the following boundary  conditions. At the left boundary  z -- 

0 the following condit ions are set: 

x ( 0 ,  t) = 1 , T ( 0 ,  t) = T(0 ) ,  q (0 ,  t) = Q(t),  (1.10) 

whereas at the right boundary  z = Z(l ) 

(1.11) d--5-x = 0 ,  T (Z(l), t) = T 0 ) .  
dz z=z(l) 

We will a ssume that  the alloys unde r  investigation remain  solid dur ing  the entire process, i.e., the 

temperature does not exceed the melting temperature T o. This constraint  imposed on the temperature  is met by 

specifying discont inuous variations of the laser radiation with time at the boundary  z = 0. 

The flux densi ty of the laser radiation within the interval r~n _< t _< r2n+l,  n = 0, 1 . . . .  at the boundary  z 

= 0 is assumed to vary l inearly with time: 

Q ( 0  = Qo( t  - r2, 0 .  (1.12) 

A b s o r p t i o n  of r a d i a t i o n  l e ads  to an  i n c r e a s e  in the  t e m p e r a t u r e .  Upon  r e a c h i n g  thc  v a l u e  

T r n a x ( r 2 n + t )  -- T ~ the laser pulse is shut off. Then  for t-2n+l < t <_ r2n+2, n = 0 ,  I . . . .  we assume that Q(t) = 0, 

which leads to cooling of the system. The laser pulse at the boundary  starts to act again when the temperature  

decreases to the value T m a x ( r 2 n + l )  = z T  0, where T O < ZTO < T~ Z --- 1 being a constant  parameter.  

Computat ional  experiments were carried out using the following numerical values of the parameters:  zr 

= 7 .6 .10  -2  cm, z(i ) = 7.8-10 -2  cm, P~)I) = 8.084 g/cm 3, and P~o) = 5.85 g/cm 3. 

It was assumed that T~o) = T~I~ = TO, and the values T ~ = 300 K and TO = 77 K wcre considered. Thc laser 

pulse was shut off when the temperature reached the value T = 800 K, close to lhe melting temperature of HgTe 

/T �9 = 848 KI, and was switched on again at ZTO = 400 K. A laser with a wavclcnglh of 10.6,um ~thc corresponding 
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photon energy hv = 0.1 eV) was considered. The constant Q0 in Eq. (1.12) was varied, but it was assumed that in 

each variant its value is the same for all laser pulses. 

It is shown in [8] that the concentration dependence of the density can be approximated by a linear 

dependence. In view of the preset values of p~t) and P~0) we obtain 

p (x) = (5.85 + 2.234x) g / c m  3. 

2. T rans fe r  Coefficients.  Specific Heat. Unfor tuna te ly ,  complete information on the coefficients of 

absorption and thermal conductivity and the specific heat for alloys of the type CdxHgl_xTe within the ranges of 

variation of concentration x and temperature T of interest is lacking at the present time. In the present work the 

corresponding expressions are obtained by means of extrapolation of existing experimental and numerical data 

presented in [8-12 ]. 

The absorption coefficient was calculated by the following expressions: 

I0 "45-3'214x when 0 _< x < 0.14,  (2.1) 

k =  105A_15 x when x _ > 0 . 1 4 .  

The absorption coefficient is assumed to be temperature- independent  within the calculation region 77 K 

_< T_< 800K.  

The dependence of the thermal-conductivity coefficient on temperature and concentration was specified by 

a table based on data presented in [8 ]: 

tc (x, 7") = ~:table = tCk,l, log xLI  = f (log x,t , log TI ) ,  

where 10 -4  _< x k <_ 1, 77 K _< T _< 900 K. Within the intervals xk < x -< xk+ 1 and T l <_ T <_ Tl+ 1 the function log 

x is determined by linear interpolation from points log ~c,t,l defined by the table. 

The specific heat C = C(x,  73 is determined by a formula presented in [8, 13 ] for CdTe alloy: 

C =  (11.79 + 2 . 0 6 - 1 0 - 3 T )  c a l . m o l e - l . K  - t .  (2.2) 

The mutual-diffusion coefficient is calculated by a formula used for regular  solid alloys under  the 

assumption that the temperature and the pressure are constant (see, e.g., [3, 14, 15]). For the mixture under  

consideration this formula can be written as follows: 

D =  [D 1 (1 - x) + D 2 x l g ,  

where the function 

(2.3) 

D 1 = DI0 exp ( -  E I / ( k T ) )  (2.4) 

(2.5) 

is the self-diffusion coefficient of Cd in Hg, and the function 

D 2 = D20 exp ( -  E 2 / ( k T ) )  

is the self-diffusion coefficient of Hg in Cd. In expressions t2.4) and (2.5) Di0 and D20 are constant factors, k 

being the Boltzmann constant. The parameters E l and E 2 determine the corresponding activation energy of each 

of the components of the alloy under consideration and are assumed to be constant. 

The factor g entering the expression (2.3) characterizes the deviation from ideal alloys due to the mixing 

(ordering) energy - the deviation caused by interaction of each atom of the crystal lattice with atoms situated 

within the closest coordination sphere. The function g is represented as follows: 

g = I + 2lEmixX (1 - x ) / ( k T ) ,  
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where Emix is the mixing energy and l is the coordinat ion  number  de te rmined  by the lat t ice s t ruc ture .  The  

a forement ioned  constants  were assumed to take the following values: D10 =,, 1374 cm3/sec ,  D2O = 1.1 �9 10 -5  cm2]sec,  

E1 = 2.61 eV, E2 -- 0.58 eV, and l = 8. 

It follows from the preceding that the expressions for the t ransfer  coefficients and  specific heat  used in the 

calculations are  very approximate .  In o rder  to de te rmine  the quali tative charac ter  of the influence of each of the 

a forement ioned  factors on the mutual  diffusion and heat t ransfer  in computat ional  exper iments  we var ied the 

corresponding "mater ia l  constants ."  

In o rde r  to invest igate cer tain quali tative regulari t ies  of the processes under  invest igat ion we cons ider  below 

self -s imilar  solut ions obta ined  under  s implifying condit ions.  Methods of solution of problems of this type are  given, 

for example ,  in [16]. 

3. Se l f -S imi l a r  Problem.  Ins t ead  of the or iginal  sys tem of equation,  we cons ider  equat ion descr ib ing  

diffusion and  heat  t ransfer  processes in a medium with a constant  dens i ty ,  thermal  conductivi ty,  and  specific heat .  

In addi t ion  we will assume that the absorpt ion  coefficient is a power function of the coordina te  and the t ime, and  

the source of the  laser  radia t ion  is descr ibed  by a power function of the time: 

k = kotaZ ~ , q ( O, t ) = qo tg . (3.1) 

Neglect ing terms that a re  small  when 0 < x _< 1 in the express ion for the diffusion coefficient,  one can 

represent  (2.3) in the following form: 

I Zl  1 (3.2) D =  D0x 1 + 2x(1  - X) - -T- -exp( -  l / T )  , 

where D o = D20; AI = 2zErnix/K; l = E I / K .  T h e  boundary  condit ions are  set as follows: 

x ( 0 )  = 1,  x ( m )  = 0 , 2 ,  J ( ~ )  = 0 ,  T ( 0 )  = T ( ~ )  = T o . (3.3) 

In view of the above assumpt ions  the sys tem (1.6)-(1.9) takes the form 

Ox _ OJ (3.4) 
Of Oz ' 

J = - D d x  ( 3 . 3 )  
OZ ' 

OT ~c 0 0 2T kqo t~ 

c)t RoCo Oz 2 PoCo 

(3.6) 

Oq - k q ,  ~ - " ' :  
Oz 

R 
k = kot'~Z (3.8) 

Dimensional  analys is  leads to the following self -s imilar i ty  condit ions for the problem (3.1)-(3 .8) :  

= - 1 / 2 ,  f l +  2~ = -  1. (3.9) 

Due to scl f -s imilar i ty  the sought functions will depend on a d imensionless  combinat ion of the form s = 

z / ( M o t ~  where MO is a constant  expresscd  in terms of the parameters  Ico/(poCo) and T 0. In this case the sought 

functions can be reprcsentcd  in thc form 
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Fig. 2. Dependence  of d imensionless  functions of t empera ture  f = f ( s )  (solid 

lines) and  concentra t ion x = x ( s )  (dashed lines) in the case where  one of the 

constant  parameters  is varied and the o thers  are fixed: a) mixing energy Al :  

1) Ai = 10; 2) Al = 2; b) absorpt ion coefficient ~ :  I) ko = 2; 2) ff-o -- l;  c) of 

thermal-conduct iv i ty  coefficient ~'1: 1) k'l -- 0.01; 2) ~'l = 0.1; d) power of the 

laser  source qt: 1) ql = 10; 2) ql = 1. 

" M o /  tO.5 x (s) = x (z, t) , T (z, t) = To[  (s) , J (z, t) = J (s) 

W (z,  t) = w (s)  T o / ( M o t O 5 ) .  (3.1o) 

Using the subst i tut ion of variables (3.10) in the sys tem (3.4)-(3.8) ,  we obta in  the following system of 

o rd ina ry  different ial  equations 

, ,  d w  , , , ,  ^ 2 
- O.Ss ~ s  = - xl  ~ + k ~  exp ( -  kos / 2 )  , (3.11) 

d f  (3.12) 
w ( , , )  = - 7 '  

A 

dx  dJ  
0 .5s  - 

ds  ds  ' 
(3.13) 

c t = A i / f ( s ) ,  c 2 = e x p ( - l / f ( s ) ) .  (3.14) 

A ~ #"  d x  

J =  - D0x I1 + 2 x ( l  - x) c I Ic2~/~ , 

, , x  

where ~"= xo,'(,OoCo), k" 0 = k 0, ql = qoo01(_'(71, and D0 = DO arc dimensionless  constants .  

(3. l 5) 
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Fig. 3. Distr ibutions of the concentrat ion x (solid lines),  temperature T (dash- 

dot lines), and  flux densi ty  of the radiation q (dashed lines) over the spatial 

coordinate z for various instants  of time: 1) t = 9.95.102 sec; 2) 1.985.103 

sec; 3) 1.238- 104 sec, for x = ~Ctabie, AI = 0, T O = TI = 300 K, Oa = 2. 

Fig. 4. Profiles analogous to those presented in Fig. 3 for (20 = 2000 at the 

ins tants  t =" 2.101 sec (1), 9.96.102 sec (2) and  3.497.103 sec (3). 

The initial and boundary  condit ions (3.3) written in the new variables take the form 

f (o) = So,  / ( |  = . t o ,  x (o) = 1 ,  x (=,) = o , 2 ,  .I (~,) = o .  

The system of heat conduction equations (3.11), (3.12) admits  the analytical solution 

A A A . .~  A * 'x  

f (s) = f0 + 2ql ~(2k0)  [eft (q(0.5k0) s) - err ( s / ( 2  , /(xl))) l / (2k  o x - 1), 

(3.16) 

(3.17) 

w ( s )  = 

/ x  A 

2k o x I - 1 

exp (4x" 1 s 2 " "" - ( 2 k o  ~: 1 - 1 ) ) ] .  
(3.18) 

The system of diffusion equations (3.13)-(3.15) must be integrated numerically.  In order to determine a 

direction of stable integration for the system of equations t3.13)-(3.15) we consider its asymptotic solutions in the 
,, 'x 

vicinity of s =  oo and s = 0 .  Let x(0) = x 2 =  1, x(oo) =Xl = 0 . 2 ,  and 1(oo) = 0 .  When s-, .  oo we obtain cl - + q ,  
/ x  

c2 -" c2, where cl and c2 are constants.  The system (3.13)-(3.15) can be written in the following form with accuracy 

up to the dominant  terms: 
/ x  

d x  d J  (3.19) 
0.Ss - 

ds  d s  ' 

^ d x  
J = - D l ~ s +  . . . .  

where DI = Doxl(l  + 2xl ( l  - x l ) q ) ,  and c2 is a constant. 

The solution of the system (3.19)-(3.20) is as follows: 

(3.20) 
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Fig. 5. Prof i les  of the  func t ion  x = x ( z )  at the  ins tan t s  t = u for va r ious  va lues  

of the  p a r a m e t e r  x, m ix ing  ene rgy  AI ,  and  rad ia t ion  power  Qo: a) ~c = retable, 

Ai = 2 .4 '  105 for Q2 = 2 at t = 7 .09 .102 sec (solid line) and  Qo = 20 at 7 = 

1 .075.103 sec (dashed  l ine) ;  b) ana logous  profi les  for x = Pqable" 10-7  and  A1 

= 2.4- 105; c) x = Xtable" 10 -7 ,  AI = 2.4" 107, Q0 = 20, t - 90.92 sec. 

J" = c exp ( -  s 2 / ( 4 D 1 ) )  + . . . .  (3.21) 

2c 
x ( s )  - - -  e r f  ( s / 2  V' D i ) )  + c 3 + . . . .  

(3.22) 

with the fo l lowing r e l a t ionsh ip  be tween  the cons tan t s  be ing  sat isf ied:  

- - C  + C 3 = X  1 . 

It fol lows f rom (3.21) that  the  in tegra l  curves  approach  each o the r  a rb i t r a r i ly  c losely ,  and  the re fo re  in t eg ra t ion  in 

the d i rec t ion  from the point  s = oo to the  point  s = 0 is imposs ib le  due  to r o u n d i n g - o f f  e r rors .  

Let us cons ide r  the behav ior  of the in tegra l  curves  in the vicini ty  of the point  s = 0. When  s --, 0, we ob ta in  

x --, x2  = 1, c2 --" c2 (c'2 is a cons tan t ) .  T h e  sys tem of di f fus ion equa t ions  (3 .13) - (3 .15)  is as follows with accuracy  

up to the d o m i n a n t  te rms:  

0 . 5 s  d x  _ d 'J  (3.23) 
d s  d s  ' 

, A 

w h e r e  D 2 = c2D O. 

" d x  (3.24) 
J =  - 0 2 ~ +  . . . .  
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Fig. 6. Dynamics  of processes for the variant  presented  in Fig. 5c: x = x(z) 

(solid line) and  T = T(z) (dashed line) for t ~ 0 ( I ) ,  16.46 sec (2), and  90.92 

sec (3). 

The  equations (3.23), (3.24) are  analogous to the equations (3.19), (3.20), which descr ibe  the a sympto te  

when s --, oo. Therefore  the solut ion is wri t ten in an analogous manner :  

2 = C 4 exp (-- s2/(4D2)) + . . . .  
(3.25) 

2c4 ( 2 ~ D  2 (3.26) x ( s )  = ~ e r f  + c  5 + . . .  

The condit ion x(0) = 1 yields  c5 = 1. 

It is evident  from the express ions  for the flow (3.21), (3.25) that  integrat ion from the point s = 0 to the 

point s -- oo is s table.  
A 

The  overde te rmina t ion  of the sys tem is removed in this case by f inding the constant  c4 = J(0)  by means  

of ad jus tment .  

Figure 2 presents  resul ts  of calculat ions in which one of the constant  parameters  was varied,  and  the values 
, ' x  

of the o thers  were kept unchanged.  It is evident  from the figure that  an increase in the parameters  AI,  ko, i.e., the 

mixing energy and the absorpt ion  coefficient,  leads quali tat ively to the same resul ts  as an the increase  in the 
A 

thermal-conduct iv i ty  coefficient and the power of the laser  source ~'l and  ql- The  calculat ions also showed that a 

decrease in the value of the specific heat  CO quali tat ively affects the behavior  of the solution analogously  to an 

increase in the pa ramete r  of the mixing energy A I . 

4. Results  of Computa t iona l  Exper iments .  The  system of equations (1.6)-(1.9) with corresponding bound-  

ary condit ions was solved by the f in i te-dif ference method using the in tegro- in tcrpola t ional  method for construct ing 

difference schemes [2 ]. An implicit  difference scheme was considered that was solved by the well-known sweep 

method. 

1. The  first series of computat ional  exper iments  was carr ied out using the express ions  for the cocfficients 

of the original  equat ions ( 1.6)-(1.9) that were presented  in the Sec. 2 of the present  paper ,  including the case where 

x = Xtable and the diffusion coefficient is of the form (2.3) with g = 1, i.e., assuming that  the al loys are  ideal.  The  

initial and ,  cor respondingly ,  boundary  values of the tempcra ture  were taken to bc equal to the value T o = 300 K. 

In different  var iants  of the calculat ions wc vaned  the pa ramete r  Qo that enters  the formula (1.12), i.e., the rate of 

increase of the flux dens i ty  of the first and all succeeding pulses. The main results  of the calculat ions are  presented  

in Figs. 3 and 4. 
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Fig. 7. Profiles of x = x(z) for ~c = Xtable, AI = 2.4- 10  7 for various values of 

the specific heat  C: 1) C -- C(2.2) (i.e., the specific heat  ca lcula ted by the 

formula (2.2)) a l  the ins tant  7-- 3.798 see; 2) C =" C(2.2) �9 102 a r T =  43.4 sec; 

3) C =1' C(2.2)" 107 at  7 = 1.75.103 sec. 

It follows from the calculat ions that an alloy of the required composit ion cannot  be produced  under  the 

assumpt ions  indicated above. In this case the quali tative charac ter  of the spatial  d is t r ibut ion  of the sought  quanti t ies 

is conserved with change in the pa ramete r  Q0- An increase in the value of the pa ramete r  Q0 just  leads  to a decrease  

in the t ime interval t = 7 in which the zone of absorpt ion  of the laser  radia t ion (the zone of local heat ing)  reaches 

the outer  bounda ry  of the sys tem z = ztl) .  In the case Q0 = 2 we obta in  7 = 1.238.104 sec, and  for Qo = 2- 103 we 

obta in  7 = 3.497.104 sec. With increasing values of Q0 the number  of "switching-offs" of the laser  pulse at moments  

when the tempera ture  maximum reaches a value close to the melt ing tempera ture  of the al loy also increases.  

2. The  next ser ies  of calculat ions was carr ied out taking into account the effect of the mixing energy on 

the mutual  diffusion of al loys.  In the var iants  indicated the value of the thermal  conduct ivi ty coefficient x was also 

varied (see Figs. 5 and 6). 

In the variant  cor responding to Fig. 5c we obtain the required profile x = x(z): x : 0.2 within the region 

760 g m <  z _< 780 ~m.  The  dynamics  of the process of mutual  diffusion and heat  t ransfer  in this case in the t ime 

interval 0 ___ t _< 7 = 90.92 sec is i l lus t ra ted by the curves in Fig. 6. 

We should also note that in the lat ter  variant  of the calculations the laser  pulse was cut off a cons iderable  

number  of times. In this case the time of action of each pulse that leads to an increase  in the t empera tu re  maximum 

to values close to the melt ing tempera ture  (T = 800 K) was of the o rde r  of ( 1 - 3 ) "  10 -2  sec. The  character is t ic  time 

of cooling to t empera ture  values T : 400 K after  the end of the action of a laser  pulse was equal to approx imate ly  

10 sec. 

3. The  third group of calculat ions was carr ied out for the values of the pa ramete r s  r = tCtablc, A = 1.2- 107 

K and various values of the specific heat C (see Fig. 7). It is evident that the concentra t ion profile x = xtz) 

approaches  the required one with increase in C. 

The  computat ional  exper iments  carr ied out demons t ra te  that the required composit ion of C d 0 2 H g o s T e  

al loy with a width of - 2 0 # m  can be ob ta ined  e i ther  in the case of s t rong underes t ima t ion  of the the rmal -  

conductivi ty coefficient (see Figs. 5c and 6) or at ra ther  high values of the specific heat  (Fig. 7). Here in both cases 

we cons idered  the expression for the mutual-diffusion coefficient (2.3) taking into account subs tant ia l  deviat ions 

from the condi t ions of ideal alloys.  This  suggests that in o rder  to provide an accurate  descr ipt ion of the processes 

under  investigation,  a deta i led analysis ,  both theoretical  and exper imenta l ,  of parameters  of the mater ia ls  under  

considera t ion  is required.  Due to the presence of considerable  temperature  gradients  the formula express ing  the 

self-diffusion coefficient requires substant ia l  refinement.  

1O0 



In the calculations carried out the shape of the laser pulse was fixed. The problem of the effect of parameters 

of the laser pulse invites further investigation. An analysis of the processes under investigation in the case where 

melting is taken into account is also of considerable interest. 

N O T A T I O N  

x, dimensionless concentration of Cd particles; z, spatial coordinate; t, time; p, density; T, temperature; 
W, heat flux density due to the thermal conductivity; C = C(x, 73, specific heat of the medium; D = D(x, 73, 
mutual-diffusion coefficient; x = ~(x, 73, thermal-conductivity coefficient; k = k(x, 73, coefficient of absorption of 

the laser radiation; q, flux density of the laser radiation; q(0, t) = Q(t), flux density of the laser radiation 

predetermined at the boundary z = 0; Q0, power of the laser radiation; A 1, parameter proportional to the mixing 

energy (ordering energy) Emix;/cO, tr dimensionless values of the absorption and thermal-conductivity coefficients 

in the self-similar solution. 
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