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MATHEMATICAL MODELING OF LASER-INDUCED
DIFFUSION PROCESSES

P. P. Yolosevich, E. 1. Levanov, and UDC 537.311.322.6:539.219.2
S. A. Fetisov

The possibility of using lasers to form semiconductor materials ( cadmium and mercury tellurides) with a
predetermined width of the band gap was explored using mathematical modeling. A one-dimensional
physicomathematical model based on diffusion and heat conduction equations and transport equations for
laser radiation with temperature- and concentration-dependent coefficients was used. Self-similar solutions
were used in order to obtain certain qualitative regularities of the processes. In the general case the
corresponding system of partial differential equations was integrated numerically.

Introduction. Semiconductor compounds of elements of the second and sixth groups of the periodic table
play an important part in modern semiconductor physics and engineering, being most important and promising
materials in a series of rapidly developing branches of science and technology, especially photo- and optoelectronics,
quantum radiophysics, and acoustoelectronics. This is primarily connected with the fact that these compounds have
various values of the band-gap width: from zero to several electron-volts, which makes it possible to vary their
electric, photoelectric, and optical properties over a wide range. The conductivity of substances of this class can
vary from values corresponding to a semimetal to those characteristic for an insulator, and the spectral zone of
photosensitivity — from IR to UV.

In this connection interest is growing in investigating various physical properties of the compounds
mentioned, in particular, narrow-band-gap semiconductors, which (especially solid Cd,Hg;_,Te solutions with x =
0.2—-0.3) have been widely used in recent years as a material for fabricating photosensors operating in the ranges
3—-5 and 8—14 um. Photosensors fabricated from these compounds already dominate in IR imaging technology and
lidar and communication systems.

Several methods of production of cadmium and mercury tellurides exist. The present work is devoted to
mathematical modeling of laser-induced diffusion processes for production of semiconductor materials based on
AB-type compounds with a predetermined width of the band gap (Cd,Hg,_,Te alloys). A one-dimensional
physicomathematical model based on diffusion and heat conduction equations and transfer equations for the laser
radiation with temperature- and concentration-dependent coefficients is employed. In order to investigate a series
of qualitative regularities, self-similar solutions are considered. In the general case the analysis is carried out
numerically.

The aim of the present work is to analyze the possibility of use of lasers to form semiconductor materials
with a required width of the band gap in the system of an epitaxial film of a narrow-band-gap semiconductor and
a substrate of a wide-band-gap AB-type semiconductor. The possible qualitative character of phenomena taking
place in the course of this process is described, e.g., in |1 ]. Laser radiation with a wavelength corresponding to the
width of the band gap of the material being produced passes through a transparent wide-band-gap semiconductor
and is absorbed by a narrow-band-gap one. As a result, intense local heating takes place at the interface of the
materials, which leads to acceleration of mutual diffusion and formation of a semiconductor alloy having a band
gap of an intermediate width. Repeated laser action leads to motion of the zone of localized absorption toward the
film-air interface and formation of an alloy of the required composition. The processes of mutual diffusion can be
controlled by varying parameters of the laser radiation and the original materials.
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Fig. 1. Formation of temperature and concentration profiles for production of
a semiconductor alloy.

Principles of the method developed to carry out numerical experiments are outlined in the monograth [2].

Particular calculations were carried out for semiconductor materials consisting of Cdg 2Hgg gTe alloys. The
possibility of forming of a semiconductor consisting of Cd,Hg)_,Te alloy was estimated. In accordance with the
width of the band gap of the material obtained, use of a laser with a wavelength A = 10.6 um was considered. It
was assumed that the temperature of the system must not exceed the melting temperature of the investigated
materials in the process of mutual diffusion and heat transfer.

1. Statement of the Problem. Basic Equations. Processes of mutual diffusion and heat transfer attributable
to absorption of laser radiation and the mechanism of heat conduction that take place in Cd,Hg,_,Te alloys can be
described by the following system of equations {3-71:

%=—div!, (LD
pc%z—divw._divq, (1.2)
/=-Dgradx, (1.3)
W=-xgradT, (1.4)
divg=—kq. (1.5)

The specific heat of the medium and the coefficients of motual diffusion, thermal conductivity, and
absorption of radiation are generally functions of concentration and temperature. Additional diffusional fluxes
resulting from the temperature gradient (thermodiffusion) are not taken into account. We treat diffusion and heat
transfer processes within the plane symmetry approximation. Then the sought functions will depend on the time ¢
and the spatial coordinate z.

Let z = 0 be the coordinate characterizing the boundary of the system under consideration on which the
flux of lascr radiation with a time-dependent density ¢(0, 0 = Q) is predetermined. Under the assumptions
specified the sysiem of cquations (1.1)-(1.5) can be written as follows:
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dx 0 ax
9x _ 9 (. 9x 1.6
at az (D az) ! (1.6)

ar _ _ W g 1.7
pC at dz gz’ "
w=—-«2L, (1.8)
dz
0
g=Q(tyexp | — [ kdz | . (1.9)
0

We will assume that at the initial instant { = 0 a substrate consisting of CdTe (x = 1) alloy with a density
plz, 0) =p?1) occupies the region 0 < z < z(g) and a layer of HgTe (x = 0) with a density p(z, O =p(()o) deposited
on the substrate occupies the region zgy < z < z(;) (see Fig. 1a). The initial temperature is constant within the
region 0 = z < z()y: T(z, 0) = 7°. As was mentioned in the Introduction, at the initial instants, as a result of
transparency of CdTe alloy, the radiation Q(?) reaches the boundary z = zy, where it is absorbed. The local heating
resulting from this circumstance leads to mutual diffusion of particles and heat transfer due to thermal conductivity.
The process lasts up to a certain instant ¢ =7 at which the local-heating zone (the zone of absorption of the laser
radiation) reaches the right boundary of the system z = z}). The objective of the investigation was an estimate of
the possibilities of forming Cdgy 2Hgg 3 Te semiconductor alloy by the time ¢ =7, i.e., the concentration profile x =
x(z, D depicted in Fig. 1b (x = 0.2 when 20y < z < z1)).

We consider the system (1.6)-(1.9) subject to the following boundary conditions. At the left boundary z =
0 the following conditions are set:

x(0,0=1, T, =Ty, ¢0.0=0(), (1.10)
whereas at the right boundary z = z(})

dx _ (1.11)
dz 2=z}, =0, TGuyd=Tau-

We will assume that the alloys under investigation remain solid during the entire process, i.e., the
temperature does not exceed the melting temperature T*. This constraint imposed on the temperature is met by
specifying discontinuous variations of the laser radiation with time at the boundary z = 0.

The flux density of the laser radiation within the interval 19, <t < 79,41, n =0, 1, ... at the boundary z
= 0 is assumed to vary linearly with time:

Q) =Qy(t—13,). (1.12)

Absorption of radiation leads to an increase in the temperature. Upon recaching the value
Taax(Tn+1) = T* the laser pulse is shut off. Then for 12,41 < ¢ < 13,42, =0, 1, ... we assume that Q) =0,
which lecads to cooling of the system. The lascr pulse at the boundary starts to act again when the temperature
decreases to the value Ty (T2n41) =xT0, where 70 < XTO < T+, x 2 | being a constant parameter.

Computational experiments were carried out using the following numerical values of the parameters: z(g)
=7.6-10"2cm, 2, = 781072 cm, p{)) = 8.084 g/cm’, and pfy) = 5.85 g/cm”.

It was assumed that Ty =Ty = 7°, and the values 7° = 300 K and 7° = 77 K were considered. The laser
pulse was shut off when the temperature reached the value 7 = 800 K, closc to the meiting temperature of HgTe
(T+ = 848 K), and was switched on again at xTO = 400 K. A lascr with a wavelength of 10.6 um (the corresponding
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photon energy Av = 0.1 eV) was considered. The constant Qg in Eq. (1.12) was varied, but it was assumed that in
each variant its value is the same for all laser pulses.

It is shown in [8] that the concentration dependence of the density can be approximated by a linear
dependence. In view of the preset values of p?l) and p?o) we obtain

p(x) = (5.85 + 2.234x) g/cm’.

2. Transfer Coefficients. Specific Heat. Unfortunately, complete information on the coefficients of
absorption and thermal conductivity and the specific heat for alloys of the type CdyHg,.,Te within the ranges of
variation of concentration x and temperature T of interest is lacking at the present time. In the present work the
corresponding expressions are obtained by means of extrapolation of existing experimental and numerical data
presented in [8-12].

The absorption coefficient was calculated by the following expressions:

) 103.45—3.214x when 0 < x <0.14,

k = _ (2.1)
105.1 15x

when x> 0.14.

The absorption coefficient is assumed to be temperature-independent within the calculation region 77 K
< T < 800 K.

The dependence of the thermal-conductivity coefficient on temperature and concentration was specified by
a table based on data presented in [8 ]:

kK(x, T)=Kype = Kpt log K= f(log x;, log T)),

where 1074 < x, < 1,77 K = T < 900 K. Within the intervals x; < x < x44 and T; < T < Ty, the function log
«x is determined by linear interpolation from points log «; ; defined by the table.
The specific heat C = C(x, T) is determined by a formula presented in [8, 13] for CdTe alloy:

C=(11.79 + 2.06-10 > T) cal-mole 'K ". 2.2)

The mutual-diffusion coefficient is calculated by a formula used for regular solid alloys under the
assumption that the temperature and the pressure are constant (see, e.g., [3, 14, 15)). For the mixture under
consideration this formula can be written as follows:

D= (D, (1 —x)+ Dyxlg, (2.3)
where the function

D, = Dyyexp (— E,/(kT)) (2.4)
is the self-diffusion cocfficient of Cd in Hg, and the function

Dy = Dy exp (= Ep/(kT)) (2.5)

is the self-diffusion coefficient of Hg in Cd. In expressions (2.4) and (2.5) Dyg and Djyq are constant factors, &
being the Boltzmann constant. The paramcters £y and E; determine the corresponding activation cnergy of cach
of the components of the alloy under consideration and are assumed to be constant.

The factor g entering the expression (2.3) characterizes the deviation from idcal alloys duc to the mixing
(ordering) cncrgy — the deviation causcd by interaction of cach atom of the crystal lattice with atoms situated
within the closest coordination sphere. The function g is represented as follows:

g=1+2UE, x (1 — x)/(kT),
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where Ep;x is the mixing energy and !/ is the coordination number determined by the lattice structure. The
aforementioned constants were assumed to take the following values: Dy = 1374 cma/sec, Dyp=1.1: 107° cmz/sec,
E;y=261eV, E;=058¢V,and/=8.

[t follows from the preceding that the expressions for the transfer coefficients and specific heat used in the
calculations are very approximate. In order to determine the qualitative character of the influence of each of the
aforementioned factors on the mutual diffusion and heat transfer in computational experiments we varied the
corresponding "material constants.”

In order to investigate certain qualitative regularities of the processes under investigation we consider below
self-similar solutions obtained under simplifying conditions. Methods of solution of problems of this type are given,
for example, in [16].

3. Self-Similar Problem. Instead of the original system of equation, we consider equation describing
diffusion and heat transfer processes in a medium with a constant density, thermal conductivity, and specific heat.
In addition we will assnme that the absorption coefficient is a power function of the coordinate and the time, and
the source of the laser radiation is described by a power function of the time:

k=kt®L (0, 1) = qpf. 3B

Neglecting terms that are small when 0 < x < 1 in the expression for the diffusion coefficient, one can
represent (2.3) in the following form:

A
D = Dyx l+2x(1-—x)7,l—exp(—-1/T):‘, (3-2)
where Dg = Dyg; Ay = 22Eq/K; { = E}/K. The boundary conditions are set as follows:
x(@) =1, x(©)=02, J(0)=0, TO)=T(=)=T,. (3.3)

In view of the above assumptions the system (1.6)-(1.9) takes the form

9x _ _ 9/ 3.4
- oz’
J=_pl 3.9
az
T kg Tk
T _ Ko 9T Kb ¢ (3.6)

L= /(Ola’ﬁ. 3.8)

Dimensional analysis leads to the following self-similarity conditions for the problem (3.1)-(3.8):
F=-1/2, B+2a=-1. 3.9
Due to self-similarity the sought functions will depend on a dimensionless combination of the form s =

z/(MOrO‘S), where Mg is a constant expressed in terms of the parameters kg (0gCq) and Tg. In this case the sought
functions cian be represented in the form
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Fig. 2. Dependence of dimensionless functions of temperature f = f(s) (solid
lines) and concentration x = x(s) (dashed lines) in the case where one of the
constant parameters is varied and the others are fixed: a) mixing energy A;:
1) A = 10; 2) A, = 2; b) absorption coefficient ko: 1) kg =2; 2) ko = 1; ©) of
thermal-conductivity coefficient xy: 1) K1 =0.01: 2) k1 =0.1; d) power of the
laser source a: 1) 31 =10; 2) 21 =1,

() =x( D), T(zt)=Tof(s), I(z1) =7 (s) My/ ">,

Wz, 1) = w(s) T/ (Myt">) . (3.10)

Using the substitution of variables (3.10) in the system (3.4)-(3.8), we obtain the following system of
ordinary differential equations

~ ~on ~ 2

—0.5s%= -x,%-fkoqlsexp(— kos“/2) (3.11)
N df 3.12)

w(s) = ds "
dx _ dJ (3.13)

0-35 45 = ds >
S = AL, G =exp (= VS (s))) (3.14)
P : 0o dx 3.15
J—-—Do.(“+2.¥(]“X)(.I}C2:I‘;, (3.15)

where & = Ko/ (poCo), //<\(, = ko, (’/\1 = q(p(}'('ﬁ ', and Dg = Dy are dimensionless constants.
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Fig. 3. Distributions of the concentration x (solid lines), temperature T (dash-
dot lines), and flux density of the radiation g (dashed lines) over the spatial
coordinate z for various instants of time: 1) ¢ = 9.95-10% sec; 2) 1.985-10°
sec; 3) 1.238-10% sec, for k = kypie, A =0, To=T1 =300 K, Qg = 2.
Fig. 4. Profiles analogous to those presented in Fig. 3 for Qg = 2000 at the
instants ¢ = 2-10' sec (1), 9.96-10% sec (2) and 3.497-10° sec (3).
The initial and boundary conditions (3.3) written in the new variables take the form
FO)=fg, f(®)=fy, x0) =1, x(o)=02, J(o)=0. (3.16)
The system of heat conduction equations (3.11), (3.12) admits the analytical solution
F(s) = fo + 24, V( 2kg) lerf (V( 0.5ky) s) — erf (s/(2 V(i) 1/ (2ko & = 1), (31D
0V k " ~ A
w(s) = — 0 S [2) exp (- 0.5F 5B v( 2 R)) -
21(0 xl - l Kl
— exp (4%, s> 2y &, — 1)1 (3.18)

The system of diffusion equations (3.13)-(3.15) must be integrated numerically. In order to determine a
direction of stable integration for the system of equations (3.13)-(3.15) we consider its asymptotic solutions in the
vicinity of s = o and s = 0. Let x(0) = x3 =1, x(») = x; = 0.2, and I(«) = 0. When s »  we obtain a -y,
32 - ¢, where ¢y and ¢; are constants. The system (3.13)-(3.13) can be written in the following form with accuracy
up to the dominant terms:

dx _ dJ (3.19)
0.5s a5 = ds”

T_ _p dx (3.20)

J==D 5+,

where Dy = Dox (1 + 2x;(1 — x))¢y), and ¢, is a conslant.
The solution of the system (3.19)-(3.20) is as follows:
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Fig. 5. Profiles of the function x = x(2) at the instants ¢ =7 for various values
of the parameter x, mixing energy A4, and radiation power Qp: a) K = Kyape,
A; = 2.4-10° for Qy = 2 at = 7.09-10% sec (solid line) and Qp = 20 at 7 =
1.075-10% sec (dashed line); b) analogous profiles for & = kypje- 1077 and 4,
=2.4-10% ©) & = kpapte- 1077, A; = 2.4-107, Qg = 20, £ = 90.92 sec.

T=cexp(=s/(4D)) + ..., (3.21)
x(s) = - 2 erf (s72VD)N+ 3+ .., (3.22)
D,

with the following relationship between the constants being satisfied:

n —
- C El-+c3-xl.

It follows from (3.21) that the integral curves approach each other arbitrarily closely, and therefore integration in
the direction from the point s = @ to the point s = 0 is impossible due to rounding-off errors.
Let us consider the behavior of the integral curves in the vicinity of the point s = 0. When s - 0, we obtain

x> x;=1, 32 - cé (cé is a constant). The system of diffusion equations (3.13)-(3.15) is as follows with accuracy
up to the dominant terms:

cdx _ dS 3.23
0.5¢ g = ds ( )
7o D, “‘j—f +o (3.24)

~

where Dy = L‘iD().
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Fig. 6. Dynamics of processes for the variant presented in Fig. 5c: x = x(z)
(solid line) and T = T(z) (dashed line) for t =0 (1), 16.46 sec (2), and 90.92
sec (3).

The equations (3.23), (3.24) are analogous to the equations (3.19), (3.20), which describe the asymptote
when s » «. Therefore the solution is written in an analogous manner:

.?= ¢4 exp(— 52/(402)) + ..., (3.25)

2¢cy s 3.26

x(s) = - erf +e5+ . (3.26)
vV D, 2V D,

The condition x(0) = 1 yields c5 = 1.

It is evident from the expressions for the flow (3.21), (3.25) that integration from the point s = 0 to the
point s = o is stable. .

The overdetermination of the system is removed in this case by finding the constant ¢4 = /(0) by means
of adjustment.

Figure 2 presents results of calculations in which one of the constant parameters was varied, and the values
of the others were kept unchanged. It is evident from the figure that an increase in the parameters A4y, ic\()‘ i.e., the
mixing energy and the absorption coefficient, leads qualitatively to the same results as an the increase in the
thermal-conductivity coefficient and the power of the laser source K| and /q\l. The calculations also showed that a
decrease in the value of the specific heat Cy qualitatively affects the behavior of the solution analogously to an
increase in the parameter of the mixing energy Aj.

4. Results of Computational Experiments. The system of equations (1.6)-(1.9) with corresponding bound-
ary conditions was solved by the finite-difference method using the integro-interpolational method for constructing
diffcrence schemes [2]. An implicit difference scheme was considered that was solved by the well-known sweep
method.

. The first scries of computational experiments was carried out using the expressions for the cocfficients
of the original cquations (1.6)-(1.9) that were presented in the Sec. 2 of the present paper, including the case where
K = kpe and the diffusion coefficient is of the form (2.3) with g = 1, i.c., assuming that the alloys are ideal. The
initial and, correspondingly, boundary values of the temperature were taken to be equal to the value 70 = 300 K.
In different variants of the calculations we varied the parameter (g that enters the formula (1.12), i.c., the rate of
increase of the flux density of the first and all succeeding pulses. The main results of the calculations are presented
in Figs. 3 and 4.
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Fig. 7. Profiles of x = x(z2) for x = kyple, A; = 2.4+ 107 for various values of
the specific heat C: 1) C = C(3.3 (i.e., the specific heat calculated by the
formula (2.2)) at the instant 7= 3.798 sec; 2) C=Cp.y - 102 at 7= 43.4 sec;
3) C=Cea- 107 at 7= 1.75-10% sec.

It follows from the calculations that an alloy of the required composition cannot be produced under the
assumptions indicated above. In this case the qualitative character of the spatial distribution of the sought quantities
is conserved with change in the parameter Qp. An increase in the value of the parameter Qg just leads to a decrease
in the time interval f =7 in which the zone of absorption of the laser radiation (the zone of local heating) reaches
the outer boundary of the system z = z(;). In the case Qg = 2 we obtain 7= 1.238- 10* sec, and for Q=2 10° we
obtain 7= 3.497-10* sec. With increasing values of Qo the number of "switching-offs” of the laser pulse at moments
when the temperature maximum reaches a value close to the melting temperature of the alloy also increases.

2. The next series of calculations was carried out taking into account the effect of the mixing energy on
the mutual diffusion of alloys. In the variants indicated the value of the thermal conductivity coefficient x was also
varied (see Figs. § and 6).

In the variant corresponding to Fig. 5c we obtain the required profile x = x(z): x = 0.2 within the region
760 um < z < 780 um. The dynamics of the process of mutual diffusion and heat transfer in this case in the time
interval 0 < ¢+ <7=90.92 sec is illustrated by the curves in Fig. 6.

We should also note that in the latter variant of the calculations the laser pulse was cut off a considerable
number of times. In this case the time of action of each pulse that leads to an increase in the temperature maximum
to values close to the melting temperature (T = 800 K) was of the order of (1-3)- 1072 sec. The characteristic time
of cooling to temperature values T = 400 K after the end of the action of a laser pulse was equal to approximately
10 sec.

3. The third group of calculations was carried out for the values of the parameters & = xype, A = 1.2+ 107
K and various values of the specific heat C (see Fig. 7). It is evident that the concentration profile x = x(2)
approaches the required one with increase in C.

The computational experiments carried out demonstrate that the required composition of Cdg ,Hgg gTe
alloy with a width of ~20um can be obtained either in the case of strong undercstimation of the thermal-
conductivity coefficient (sce Figs. 5c and 6) or at rather high values of the specific heat (Fig. 7). Here in both cases
we considered the expression for the mutual-diffusion coefficient (2.3) taking into account substantial deviations
from the conditions of ideal alloys. This suggests that in order to provide an accurate description of the processes
under investigation, a detailed analysis, both theoretical and experiniental, of parameters of the materials under
consideration is required. Due to the presence of considerable temperature gradients the formula expressing the
self-diffusion cocfficient requires substantial refinement.

160



In the calculations carried out the shape of the laser pulse was fixed. The problem of the effect of parameters
of the laser pulse invites further investigation. An analysis of the processes under investigation in the case where
melting is taken into account is also of considerable interest.

NOTATION

x, dimensionless concentration of Cd particles; z, spatial coordinate; ¢, time; p, density; T, temperature;
W, heat flux density due to the thermal conductivity; C = C(x, T}, specific heat of the medium; D = D(x, 1,
mutual-diffusion coefficient; « = x(x, T), thermal-conductivity coefficient; k = k(x, T, coefficient of absorption of
the laser radiation; ¢, flux density of the laser radiation; ¢(0, » = Q(1, flux density of the laser radiation
predetermined at the boundary z = 0; Qp, power of the laser radiation; A, parameter proportional to the mixing
energy (ordering energy) Epix; l/c\o, fc\,, dimensionless values of the absorption and thermal-conductivity coefficients
in the self-similar solution.
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